

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Implementation of Dijkstra’s Algorithm in

Pathfinding for Artificial Intelligence in Video Games

Addin Munawwar Yusuf - 13521085

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521085@std.stei.itb.ac.id

Abstract—This paper discusses about Dijkstra’s algorithm and

how it is implemented for Artificial Intelligence Pathfinding in

video games. Dijkstra’s algorithm is based on some concept that

contains graph theory, the shortest path problem, greedy

algorithm, and priority queue. This paper also discuss about some

limitation of Dijkstra’s algorithm when implemented in real-time

video game environtments. For demonstration, this paper also

implements the algorithm in unity using the language C#.

Keywords—Dijkstra’s Algorithm, Pathfinding, Video Games,

Artificial Intelligence.

I. INTRODUCTION

Video games are digital games that are played on a computer,

a console, or a mobile device. The first video game was created

in 1958, and the industry has grown into a multi-billion dollar

industry since then.

The development of video games has progressed significantly

over the years. Especially, in recent years, the use of artificial

intelligence (AI) in video games has become increasingly

common. One of the main ways that AI is used in video games

is to generate the behavior of non-player characters, more

commonly known as NPCs, such as enemies in a game. This can

involve using AI to create realistic behavior for the enemies that

can engage and interact with players in a believable way.

One important aspect of creating a good enemy AI in video

games is pathfinding, which can find the shortest path to the

player’s location or travel from one point to another. This kind

of behavior is very common in video games, such as in The

Escapist 2 (2017) and Granny (2017), where the game uses

pathfinding on the enemy AI to create a believable response to

the player’s action, such as chasing the player or checking the

location which player causes distraction.

Fig. 1. Police AI uses pathfinding to chase the player in the

game: The Escapist 2 (2017)

(Source: https://store.steampowered.com/app/641990

/The_Escapists_2/)

 Dijkstra’s algorithm is well-known as one of the algorithms

that solve pathfinding to get the shortest path. It has been widely

used in a variety of applications, including in pathfinding for

game AI. In this paper, the author will explore how this

algorithm is implemented for AI in video games. Firstly, the

author will discuss about some base theory that underlying this

algorithm, which consists of the shortest path problem, graph

theory, greedy algorithm, priority queue, and then the Dijkstra’s

algorithm itself. Later in this paper, the author will also

experiment with how this algorithm could be implemented in-

game AI. For this experiment, the author will use the game

engine unity, which uses C# as its language.

II. GRAPH THEORY

A. Graph Definition

A graph is used to represent discrete objects and its relation

between each object. A formal definition of graph G is G = (V,

E), in which:

- V is a finite non-empty set of vertices (also called as

nodes or points) = {v1, v2, v3, …, vn}.

- E is a finite set of edges that connects 2 vertices (also

called as links or lines) = {e1, e2, e3, …, en}.

B. Types of Graph

Based on the directional orientation of the graph’s edges:

a) Undirected graph

An undirected graph is a graph that does not have a

direction orientation on its edges.

Fig. 2. Example of undirected graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

b) Directed Graph

A directed graph is a graph that each of its edges has a

directional orientaition.

https://store.steampowered.com/app/641990
https://informatika.stei.itb.ac.id/~rinaldi.munir/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 3. Example of directed graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

Based on the availability of parallel edges or loops:

a) Simple graph

A simple graph is an undirected graph that does not

contains parallel edges or loops.

Fig. 4. Example of simple graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

b) Not simple graph

A not simple graph is a graph that contains parallel edges

and/or loops. The graph that contain parallel edges is

called multi-graph.

Fig. 5. Example of multi-graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

A graph that contain loops is called pseudo-graph.

Fig. 6. Example of pseudo-graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

Based on the availibility of edges weights:

a) Weighted graph

A graph that has weight on each edges is called weighted

graph.

Fig. 7. Example of weighted-graph

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/)

b) Non-weighted graph

A graph that does not has weight on each edges is called

weighted graph.

C. Graph Terminology

In a graph, there are some terminology that can be used:

1. Adjacency

Two vertices is called adjacent if there is at least one edge

that directly connect these vertices.

2. Incidency

For a random edge e = (v1, v2), e is called incident with

vertex v1 and e incident with vertex v2, vice versa.

3. Degree

Degree if a vertex is the number of edges that incident

with that vertex.

4. Path

Path that has a length of n from vertex v0 to vertex vn in

graph G is a sequence of alternating vertices and edges

such that each successuve vertex is connected by the

edge. The length n also represent the number of edges

passed from v0 to vn.

5. Circuit (Cycle)

A circuit or a cycle ia a path that starts and ends in the

same vertex.

6. Connectedness

Vertex v0 to vertex vn is called to be connected if there is

a path in graph G from vertex v0 to vertex vn. A connected

graph is graph that each of pair vi and vj in graph G,

vertex vi and vj is connected.

III. THE SHORTEST PATH PROBLEM

The shortest path problem is a well-known problem in

computer science and mathematics. It involves finding a path

between two vertices (or nodes) in a graph, such that the sum of

the weights of all edges passed is minimized.

Fig. 8. Shortest path (A, C, E, D, F) between vertices A and F

https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

in the weighted directed graph.

(Source: https://en.wikipedia.org/wiki/File:Shortest_path

_with_direct_weights.svg)

The problem is often formulated as follows: suppose a graph

G with vertices V and edges E, and two nodes s and t, find the

the shortest path from s to t. This problem is also called as

single-pair shortest path problem to distinguish it from other

variations, such as:

- The single-source shortest path problem, in which we

have to find shortest paths from a source vertex v to all

other vertices in the graph.

- The single-destination shortest path problem, in which

we have to find the shortest paths from all vertices in the

directed graph to a single destination vertex v.

- The all-pairs shortest path problem, in which we have

to find the shortest paths between every pair of vertices v

and v’ in the graph.

Some examples of the application of this shortest path

problem are for finding route in road networks, logistics,

communications, electronic design, etc. It also includes the

pathfinding for game AI which the author will discuss it about

it more in this paper.

IV. GREEDY ALGORITHM

Greedy algorithm is a paradigm or an approach that builds up

a solution piece by piece, making the locally optimal choice at

each stage, with the hope of finding a global optimum. In the

other words, this algorithm always makes the choice that seems

to be the best at the given moment. It never reconsider the

previous decision, and only considers the available options

before making a decision.

That’s why in many cases, a greedy strategy does not produce

the optimal solution to a problem, as they may get trapped in a

suboptimal solution. However, it can yield the approximation of

a globally optimal solution for such a complex problem in a

reasonable amount of time.

Fig. 9. Greedy algorithm failure in searching for the largest

path.

(Source: https://en.wikipedia.org/wiki/File:Greedy-search-

path-example.gif)

For example, suppose we want to represent 36 cents using

only coins with values {1, 5, 10, 20}. The coin with the highest

value that is less than the remaining change owed, is the local

optimum. Then, the greedy algorithm will look like the Fig. 10

below.

Fig. 10. Greedy algorithm in change-making problem.

(Source: https://en.wikipedia.org/wiki/File:Greedy_algorithm_

36_cents.svg)

Greedy algorithm does not produce good solutions on every

problems, but there are some properties in which the algorithm

will work:

1) Greedy choice property

An optimal solution to the problem can be found by

choosing the best choice at each step, without any

reconsideration to the previous choice.

2) Optimal substructure

An optimal solution to the problem correspond to the

optimal solution to its subproblems.

3) Matroid

A matroid is a mathematical structure that generalizes the

notion of linear independence from vector spaces to

arbitrary sets. If a problem has the structure of a matroid,

then the greedy approach can solve the problem

optimally.

One example of greedy algorithm is dijkstra’s algorithm,

which the author will talk into more detail later in section VI.

V. PRIORITY QUEUE

A priority queue is an abstract-data type that is similar to

regular queue or stack, which holds a set of elements, with a

difference of the addition of priority on its elements. In a priority

queue, an element with high priority will be served before an

element with low priority, making this a useful data structure for

certain types of algorithms.

A priority queue has this properties:

- Every item has a priority associated with it.

- An element with high priority will be dequeued befor an

element with lower priority.

- If two elements have the same priority, then the rules

from regular queue apply (First In, First Out).

Priority queues are often implemented using binary heap,

which is a special kind of binary tree that satisfies heap property:

the value of each node is greater than or equal of its parent node,

called as min heap, or complemently — each node is less than

or equal of its parent node — is called max heap. This ensure

the element with the highest priority to always stored in the root

of the binary heap.

https://en.wikipedia.org/wiki/File:Shortest_path
https://en.wikipedia.org/wiki/File:Greedy_algorithm_

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 11. Priority queue implementation using min heap.

(Source: https://www.techiedelight.com/wp-content/uploads/

2016/11/Min-Heap.png)

This data structure will be beneficial when we talk about

Dijkstra’s algorithm.

VI. DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm is a popular algorithm for finding the

shortest path between two nodes in a graph. It was first invented

by a Dutch computer scientist, Edsger Dijkstra in 1956. It was

originally used to find the shortest path to travel from city to

city. Now, it has been widely use in a variety of applications.

The defined problem in dijkstra’s algorithm is a weighted

graphs, and we had to find the shortest path to travel from vertex

A to vertex B. More generally, this is what the author discuss at

section III, the shortest path problem.

The basic idea of this algorithm is to sequantially explore the

graph, starting from the source node, and choose the next node

based on the lowest distance from the source node. This means

in each step, the algorithm selects the closest node from the

source node and updates distance of all adjacent nodes based on

the distance to the selected node. We repeats this process until

all nodes has been explored, at which point it will have found

the shortest part from the source node to all other nodes in the

graph. This follows the greedy algorithm principle, as discussed

in section IV.

There are 2 approaches in this algorithm, using Prim’s

Algorithm in O(V2), or using heap (or priority queue) in

O(ElogV). For this paper, we will only talk about the second

option, which is using a priority queue (for the next part, heap/

priority queue will just be referred to as prio queue). To

implement this, we first store all the unexplored nodes in the prio

queue. The priority of each node is determined by the distance

from the source node. This allows us to quickly retrieve the node

that is closest to the source node and update the distance of all

adjacent nodes accordingly.

The step-by-step for Dijkstra’s algorithm would be as

follows:

1. Create a priority queue that contain all nodes. For

initialization, set the source node to 0 and other nodes to

infinity. This is the tentative distance value which will be

updated as the algorithm runs.

2. Set the initial node as current.

3. For the current node, consider all the unvisited neighbors

and calculate their distance from the current node.

Compare the newly calculated distance with the one that

has been assigned before and assign the smaller one.

4. After done considering all neighbours, pop the current

node from the priority queue, and the next node will be

the top of the priority queue.

5. Repeat step 3-4 until the priority queue is empty.

Limitation

While Dijkstra’s algorithm is quite simple, it also comes with

limitations. One of the main challenges is its computational

complexity. This can be a problem in real-time video game

environments, where the algorithm needs to be executed quickly

in order to keep up with the fast-paced gameplay.

Another limitation is that Dijkstra’s algorithm only handles

static environments. This means that Dijkstra’s algorithm

assumes that the graph data is static, which means it cannot be

changed

VII. DIJKSTRA’S ALGORITHM EXPERIMENT IN UNITY

For this experiment, the author will use the map from the

game “The Escapist 2”. The reason why the author choose The

Escapist 2 as the game reference is that this game implements a

lot of pathfinding for NPC, such as for the police, the medic

team, the guard dogs, etc, so it would be very natural to

experiment there. Fig. 12 is a layout of one of the maps, Center

Perks 2.0.

Fig. 12. The map layout of Center Perks 2.0 from the game

“The Escapist 2”

(Source: Author Documentation)

1) Graph Modelling

First of all, let’s model this map into a graph model

first, because the algorithm needs the defined problem to

be in form of a graph. The idea of converting this map

into a graph is every room will represent a vertex, and the

door between each room will be the edge. The location

point of each vertex will be located in the center of the

room, and in front of each door if there is a branch. The

weights of each edge can be approximated by the length

of the edge, which can be obtained from unity, the game

engine that the author used for this simulation. Here is

what the graph model would look like in unity.

https://www.techiedelight.com/wp-content/uploads/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 13. The modeled graph from the map in unity

(Source: Author Documentation)

Converting this into a simpler graph, the result of

the graph would look like Fig. 14.

Fig. 14. The simpler graph of map layout from Fig.13.

(Source: Author Documentation)

2) Defined Problem

Now let’s defined the problem. The author will take

this example from the game “The Escapist 2” again.

Suppose there is a player and an enemy. The enemy’s

objective is to catch the player, but he has no idea where

the player could be. The only way for the enemy to find

the player is by looking through a security camera, which

is planted in some of the rooms. Suppose the player is in

room 16, and there is a security camera there. The enemy

itself is in room 1. What is the shortest path the enemy

could take to go from room 1 to room 16?

This is exactly what Dijkstra’s algorithm solves, the

shortest path problem. Now, let’s head to unity.

3) Implementation

For the simulation, the author uses a third-party

library, Quikgraph. Quikgraph is a library for the C#

programming language that provides data structures and

algorithms for working with graphs. The Quikgraph

library provides a number of classes and methods that

can be used to create and manipulate graph data

structures. For this, the author will use the

UndirectedGraph<T> class from the library

First, let’s create a Vertex and Edge class in unity.

The Vertex class will have an ID, while the Edge class

will have 2 vertices and edge weight. Here is the

implementation.

using UnityEngine;

public class Vertex : MonoBehaviour

{

 public int ID;

}

Snapshot. 1. The Vertex Class in Unity

(Source: Author)

using UnityEngine;

using QuikGraph;

public class Edge : MonoBehaviour,

IEdge<Vertex>

{

 public Vertex Source { get; set; }

 public Vertex Target { get; set; }

 public float Weight { get; set; }

}

Snapshot. 2. The Edge Class in Unity

(Source: Author)

The next step is to make a list of vertices and a list of

edges. Let’s create a script called GraphManager.cs

to handle all of the problems related to graphs. The class

GraphManager will inherit from MonoBehaviour,

which is a built-in class in unity that can be used for the

geneobjectsject. It has a method Awake(), which will

be called once the script is initialized. In this method, we

can initialize the list of vertices and the list of edges.

using System.Collections.Generic;

using UnityEngine;

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

using QuikGraph;

using QuikGraph.Algorithms;

public class GraphManager :

MonoBehaviour

{

 public List<Vertex> vertices = new

List<Vertex>();

 public List<Edge> edges = new

List<Edge>();

 private void Awake() {

 // Initialize list of vertices

 // Initialize list of edges

 }

}

Snapshot. 3. Initialization of List of Vertices and List of

Edges

(Source: Author)

Now we will also need to initialize the graph. For this,

we will use the UndirectedGraph<T> from the

Quikgraph library. We can initialize this in another built-

in method from MonoBehaviour, Start() method. Similar

to Awake(), Start() method will also called once right on

the frame when the simulation started. Start() is called

after Awake(), so the list of vertices and the list of edges

will be initialized already. Here is how it is implemented.

public class GraphManager : MonoBehaviour

{

// Initialization of the list of vertices and

edges..

public UndirectedGraph<Vertex, Edge> graph =

new UndirectedGraph<Vertex, Edge>();

private void Start() {

 foreach (Vertex vertex in vertices) {

 graph.AddVertex(vertex);

 }

 foreach (Edge edge in edges) {

 graph.AddEdge(edge);

 }

 }

}

Snapshot. 4. Initialization of Graph

(Source: Author)

After all of the requirements have been satisfied, we

can run Dijkstra’s algorithm now. To do this, we will use

the method that is provided by Quickgraph,

ShortestPathsDijkstra. We will then update the

path color in the game to red to show the shortest path.

// Will be called from a button

public void RunDjikstra(){

 ResetColor(); // Reset previous path

color

 var tryGetPath =

graph.ShortestPathsDijkstra(e =>

e.Weight, vertices.Find(x =>

x.ID.ToString() == startingVertex));

 IEnumerable<Edge> path;

 if (tryGetPath(vertices.Find(x =>

x.ID.ToString() == endingVertex), out

path)) {

 Debug.Log("Path found: " + path);

 foreach (Edge edge in path) {

 foreach (Transform child in

edge.transform) {

 // Change path color to red

 child.GetComponent<SpriteRend

erer>().color = Color.red;

 }

 }

 }

}

Snapshot. 5. Dijkstra’s algorithm using Quickgraph

library

(Source: Author)

4) Results

Now the algorithm is done, we can use this for our AI

to find the shortest path between 2 points that we can

implement in our own video game. The source code for

this simulation can be obtained from:

https://github.com/moonawar/DijkstraAlgoUnity

a) Shortest path from room 1 to room 16

https://github.com/moonawar/DijkstraAlgoUnity

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 15. The shortest path generated by Dijkstra’s algorithm

from room 1 to room 16

(Source: Author Documentation)

b) Shortest path from room 5 to room 14

Fig. 16. The shortest path generated by Dijkstra’s algorithm

from room 5 to room 14

(Source: Author Documentation)

c) Shortest path from room 10 to room 0

Fig. 17. The shortest path generated by Dijkstra’s algorithm

from room 10 to room 0

(Source: Author Documentation)

Based on the 3 experiments above, the algorithm

shows a pretty accurate result. These results demonstrate

the effectiveness of Dijkstra’s algorithm for pathfinding

AI agents in video games. For a simple game like The

Escapist 2, Dijkstra’s algorithm for pathfinding is more

than enough. For the more complex cases, Dijkstra’s

algorithm may not be as effective and we might need a

more complex algorithm, such as A* pathfinding or

Theta* pathfinding. etc.

VIII. CONCLUSION

AI has been very common in recent times in game

development. One of it applications is to create Non-Player

Characters, known as NPCs. One of the common problems in

game development is pathfinding for NPC.

There are many algorithms that can generate pathfinding for

AI. Dijkstra’s algorithm is one of them. There are some concepts

and theories that underlie Dijkstra’s algorithm. Those include

graph theory, the shortest path problem, greedy algorithm, and

priority queue.

Dijkstra’s algorithm is quite effective to handle pathfinding,

specifically in real-time video game environments. Its limitation

it is that Dijkstra’s algorithm can only handle static data graphs.

Thus, for the more complex game that requires dynamic graphs

that keeps changing rapidly, Dijkstra’s algorithm is not suitable

anymore, and that’s where more complex algorithm such as A*

or Theta* can play its role.

REFERENCES

[1] Lists, Decisions and Graphs: With an Introduction to Probability. Edward

A. Bender, S. Gill Williamson
[2] Graf Bagian 1 [Online]. https://informatika.stei.itb.ac.id/~rinaldi.munir/

Matdis/2020-2021/Graf-2020-Bagian1.pdf/. Diakses pada 8 Desember 2022.

[3] "A note on two problems in connexion with graphs". Numerische
Mathematik. 1. Dijkstra, E. W. (1959).

[4] Greedy Algorithms [Online]. https://www.geeksforgeeks.org/greedy-

algorithms/. Diakses pada 10 Desember 2022.
[5] What is Priority Queue | Introduction to Priority Queue [Online].

https://www.geeksforgeeks.org/priority-queue-set-1-introduction/. Diakses

pada 10 Desember 2022.
[6] Dijkstra’s Shortest Path Algorithm | Greedy Algo-7 [Online].

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-

7/. Diakses pada 10 Desember 2022.

[7] "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms

(Second ed.). Cormen et al. (2001).

[8] DjikstraAlgoUnity, Addin Munawwar Yusuf (2022). https://github.com/
moonawar/DijkstraAlgoUnity.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2020

Addin Munawwar Yusuf - 13521085

https://informatika.stei.itb.ac.id/~rinaldi.munir/%20Matdis/2020-2021/Graf-2020-Bagian1.pdf/
https://informatika.stei.itb.ac.id/~rinaldi.munir/%20Matdis/2020-2021/Graf-2020-Bagian1.pdf/
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://github.com/

